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Abstract The c-myc oncogene acts as a pluripotent modulator of transcription during
normal cell growth and proliferation. Deregulated c-myc activity in cancer can lead to
excessive activation of its downstream pathways, and may also stimulate changes in
gene expression and cellular signaling that are not observed under non-pathological
conditions. Under certain conditions, aberrant c-myc activity is associated with the
appearance of DNA damage-associated markers and karyotypic abnormalities. In
this chapter, we discuss mechanisms by which c-myc may be directly or indirectly
associated with the induction of genomic instability. The degree to which c-myc-
induced genomic instability influences the initiation or progression of cancer is likely
to depend on other factors, which are discussed herein.
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1
Introduction
1.1
Overview

Cells must overcome multiple barriers designed to limit growth and prolif-
eration to become tumorigenic [1–3]. The aim of this chapter is to discuss
accumulating evidence that expression of c-Myc and other oncoproteins can
compromise genomic integrity, how this may contribute to tumorigenesis,
and to consider some of the potential mechanisms involved. In addition to
other chapters in this volume, we refer the reader to the following excellent
reviews detailing the diverse biological effects of the c-Myc protein on cell
growth, proliferation, apoptosis, and differentiation [4–10].

1.2
Genetic Instability and Cancer Progression

The genesis of a malignant cell is a multistage process requiring the progres-
sive accumulation of genetic and epigenetic changes [3]. Debates have arisen
over whether the large number of changes required for malignancy (typically
6–10) arise spontaneously or whether events occur during tumor progression
that increase genomic instability [11–13]. Consistent with the latter idea, many
human tumors exhibit structural chromosomal aberrations such as amplifi-
cations that harbor increased copies of the c-myc oncogene [14, 15], and this
type of genetic instability is not detected at measurable frequencies in normal
cells [16]. This suggests that the mechanisms that maintain structural chro-
mosome integrity are compromised during tumor progression. Consistent
with this, loss of p53 function occurs frequently during cancer progression
and creates a permissive environment for gene amplification [17, 18].

Vogelstein and colleagues have suggested subdividing tumors with
genomic instability into two broad categories; those displaying chromosomal
instability (CIN) and those with microsatellite instability (MIN) [19]. CIN
represents a numerical and/or structural change in the karyotype, while MIN
describes the expansion or contraction of homopolymers or tandem short
repeats throughout the genome [20, 21]. CIN may occur due to mutations
in genes required for the partitioning of chromosomes during mitosis, in
genes that control cell-cycle checkpoints, or in genes that participate in
DNA metabolism and repair [22]. Structural aberrations leading to CIN-
like chromosomal abnormalities can also occur following break-induced
translocations. These translocations can be balanced, such as the Ig:myc
translocation in Burkitt’s lymphoma (BL) [23] or unbalanced, such as
non-reciprocal translocations generated as a result of bridge-breakage-fusion
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cycles [24]. MIN is typically caused by mutation or epigenetic inactivation
of genes encoding proteins that participate in mismatch repair [25, 26].
As technology has improved the resolution at which karyotypic differences
between normal and tumor can be determined, it has become clear that
virtually all tumors exhibit abnormalities at the DNA level. In this review,
other changes in the genome including point mutations, deletions, and base
modifications will be included as manifestations of genomic instability.

Induction of cell-cycle arrest and activation of apoptosis are parts of the
normal cellular defenses against oncogene-driven proliferation [27, 28]. It
follows that inactivation of either of these two processes could enhance the
likelihood of tumorigenesis. For example, variants with defective arrest or
apoptotic machinery are more likely to survive oncogene activation than
their “normal” counterparts. Chemical carcinogens and ionizing radiation,
which accelerate tumorigenesis by increasing the frequency of somatic muta-
tion [29], can increase the probability of generating such variants. Mutation
rates are accelerated in mice following topical application of carcinogens [30].
Carcinomas arising in such mice frequently display mutations in the H-ras
oncogene, a mutation also associated with human carcinomas [31, 32]. This
strongly implicates induction of somatic mutations as an important factor
in cancer progression. Viruses can also increase tumorigenicity, but for
many years physical agents and oncogenic viruses were thought to work
by different mechanisms [33]. Four decades ago, Nichols suggested that the
mechanisms of radiation, chemical, and virus-driven oncogenesis may be
shared, when he stated: “... it is possible that one of the earliest changes in
tumor cells involves activation of a gene locus which increases the likelihood
of non-disjunction or other mitotic error” [33]. Thus, Nichols proposed that,
like chemical carcinogens and ionizing radiation, viruses might increase
mutation frequency. This provided a conceptual framework expanded upon
by Nowell [34] and Loeb [35] who suggested that genetic lability could
accelerate tumor progression through mutation of genes that are essential for
maintaining chromosomal integrity. Lesions in such genes would give rise to
a “mutator phenotype” able to fuel further instability. The MIN phenotype
(see above) is one specific example of the mutator phenotype. While the MIN
phenotype was first identified in Lynch syndrome (hereditary non-polyposis
colon cancer) [36], microsatellite instability has subsequently been observed
in a variety of other cancers [37–39].

1.3
Viruses, Oncogenes, and Connections to Genome Destabilization

The link between tumor-associated viruses and perturbation of the genome
is clear in birds and rodents, and accumulating data suggest viruses may
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have a similar impact on genome stability in human cancer. Early work
in this field by Nichols demonstrated that infection of cells with the onco-
genic Rous sarcoma virus (RSV) induced strand breaks and chromosomal
abnormalities [40]. RSV-induced tumorigenesis is attributed to expression
of the oncogene v-src [41], and overexpression of cellular c-src can promote
genomic instability [42]. Together these data indicate that oncogene activa-
tion by viruses and consequent genome destabilization may be important in
tumorigenesis. Viruses can also induce neoplasia by deregulating the expres-
sion of endogenous proto-oncogenes [43]. Integration of retroviruses near
the c-myc promoter leads to aberrant c-myc expression in avian and murine
tumors [44, 45]. Similarly, retroviral integration increases transcription of ras,
an oncogene implicated in the initiation or progression of human cancer [46].

Many human tumors associated with oncogenic viruses also display ge-
nomic instability. For example, chromosomal instability is observed in human
papillomavirus (HPV)-associated cancers [47]. HPV-induced perturbation of
the genome appears to precede the invasive stage of cancer [48]. Instability is
almost certainly due to the virally encoded E6 and E7 proteins, which inacti-
vate the tumor suppressors p53, pRB, and pocket proteins related to pRB [49].
Oncogenic HPV has been implicated in inducing strand breaks [51, 50], which
are precursors of diverse types of structural chromosomal alterations (e.g., see
Windle et al. [52]). Furthermore, activation of oncogenic ras in murine fibrob-
lasts induces structural and numerical chromosomal aberrations within one
cell cycle [53], as does Mos, an oncogene that activates the mitogen-activated
protein kinase (MAPK) pathway [54].

Considerable data therefore indicate that oncogene activation may be
a common mechanism by which genomic instability arises in tumors. In the
following sections we will discuss the diverse mechanisms by which aberrant
c-myc expression may also lead to genomic instability.

1.4
Activation of c-myc and Initiation of Instability

Many mechanisms can lead to the activation of c-myc during tumorigen-
esis, including enhanced transcription by other oncogenic signaling path-
ways [56, 55], chromosomal rearrangements [15, 57], and resistance of Myc
protein to ubiquitin-mediated proteolysis [58, 59]. c-myc is deregulated in the
majority of breast carcinomas and in the early and late stages of colorectal
cancer [60–64]. Overexpression of c-myc is also associated with the etiology
of hepatocellular carcinoma (HCC) [65].

Elevated c-myc expression and genomic instability appear to be correlated
in the solid tumor types mentioned above [66–68]. This raises the intriguing
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possibility that high-level c-myc expression in some situations might actually
contribute to genome destabilization. In vitro and in vivo studies over the past
decade strengthen this possibility. For example, Mai and colleagues showed
that elevated c-myc increases the frequency of obtaining variants resistant to
the antimetabolites N-(phosphonacetyl)-l-aspartate (PALA) and methotrex-
ate via amplification of their respective target genes, CAD and DHFR [69–71].
This was recently confirmed by Felsher and Bishop [72]. Cyclin D and ri-
bonucleotide reductase R2 are also amplified following activation of c-myc
in the absence of drug selection [73, 74], implying that c-myc function, and
not the genome destabilizing effects of the selective agents [75], explains the
observed increase in amplification frequency. While it has not been deter-
mined whether preferred regions are destabilized by c-myc overexpression,
fluorescent in situ hybridization (FISH) and spectral karyotypic analyses in-
dicate that c-myc overexpression may induce alterations at multiple genomic
regions [74, 76]. This could have significant physiological impact since am-
plification of genes such as mdm2, cyclin D, and c-erbB2 occur frequently in
human cancers as the overproduced gene products provide cells with growth
and survival advantages [77–79].

In vivo models of tumorigenesis support the notion that c-myc-induced
instability contributes to the neoplastic phenotype. For example, Felsher and
Bishop demonstrated that induction of instability in Rat1a fibroblasts by acti-
vation of c-myc rendered them tumorigenic in mice [72]. Importantly, c-myc
was activated in cells under conditions where apoptosis would not be expected
to occur (e.g., complete medium). Furthermore, cell lines derived from such
tumors retained the ability to undergo c-myc-induced apoptosis. These data
suggest that induction of genomic instability by c-myc does not always require
a selection against apoptotic pathways. Transient activation of c-myc was suf-
ficient to induce tumorigenesis and gene amplification. Therefore, initiation
of genomic instability by c-myc likely contributes to neoplastic progression
in this cell type. The genetic changes that occur following activation of c-myc
also appear to be important during liver and breast carcinogenesis in vivo. For
example, pre-neoplastic cells from both tissues contain non-random chromo-
somal rearrangements, including translocations and deletions that persist in
late-stage HCC and mammary carcinomas [67, 80]. The early appearance of
instability in these models correlates with deregulated c-myc activity. Per-
sistence of chromosomal rearrangements into “mature” tumors suggests that
a combination of c-myc-induced instability and subsequent selective pressure
are important factors in the HCC and breast carcinoma models.

In other tumor types, it appears that inhibition of p53-induced apoptosis,
rather than induction of instability, is the main block to c-myc-driven tumori-
genesis. To illustrate, expression of c-myc under the control of the IgH [81] or
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Igκ or γ [82] enhancers leads to B cell lymphoma with pre-B cell and B cell phe-
notypes, respectively. Both models show a protracted latency prior to onset
of lymphoma, suggesting secondary events are required for c-myc-induced B
cell tumors. Various genetic lesions that decrease p53 function, or that prevent
induction of apoptosis, accelerate c-myc-induced lymphomagenesis [83–85].
It seems that large-scale genomic instability is not required in the Eμ-myc
model of B cell lymphoma, since tumors in which c-myc-induced apoptosis
was inhibited by dominant-negative caspase-9 were pseudodiploid [86]. Using
an integrated LacZ reporter, Rockwood and colleagues analyzed the mutation
and rearrangement rates in c-myc-driven lymphomas [87]. Strikingly, they
found that chromosomal rearrangement but not mutation rate was enhanced
in lymphomas compared to normal tissue, and that the p16Ink4a/p19arf locus
was deleted. These data indicate that deregulated c-myc activity likely selects
for cells with defects in the retinoblastoma (Rb) and p53 tumor suppressor
pathways. While BL biopsies are usually pseudodiploid, comparative genomic
hybridization and spectral karyotypic analysis have found that, similar to
mouse models, numerous chromosomal aberrations, including deletions are
present [88]. In summary, it appears that selection for somatic mutations in
tumor suppressor pathways is the primary determinant in c-myc-induced B
cell lymphomagenesis. Once cells resistant to apoptosis emerge, the growth
and proliferative functions of c-myc are able to drive tumorigenesis.

2
Possible Mechanisms of c-myc-Induced Instability

The complex karyotype that is observed in biopsies from human tumors is
a footprint of multiple genetic changes that have occurred during tumorigen-
esis. Therefore, it is not possible to conclude when during tumor progression
such changes arose, and whether the instability is a continuing process or
a reflection of a historic event. Consequently, it is not possible to derive cause
and effect relationships between genomic instability and c-myc overexpres-
sion by analyzing archival human tumor samples. However, an examination
of gene amplification mechanisms suggests how excess myc activity and ge-
nomic instability might be causally linked. The two mechanisms for amplifi-
cation in mammalian cells are re-replication of target loci and induction of
strand breaks [24, 52, 89–91]. Re-replication involves the initiation of multiple
rounds of DNA replication within a single S-phase. Recent data demonstrate
that high-level overexpression of cdc6 and cdt1 proteins, which are required
for replication origin licensing, can induce re-replication at some frequency
in cancer cell lines [92]. Since c-myc can transactivate genes encoding replica-
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tion origin licensing proteins ([93, 94] and Sect. 2.5 below), it remains possible
that it could induce amplification by a re-replication mechanism.

The second mechanism for gene amplification involves chromosome
breakage, which can be induced in a number of ways [52, 95, 96]. Importantly,
recent data show that elevated c-myc expression can lead to metaphase
chromosome abnormalities including those that harbor amplified genes
and that usually reflect breakage during G1 or S-phase [72]. Breakage has
also been observed in G0/G1 arrested cells expressing the c-Myc/estrogen
receptor fusion protein (Myc-ER) under conditions where apoptosis was not
induced [97]. The same study showed phosphorylation of p53 on Ser15, an
indicator of DNA damage. Finally, c-myc activation can lead to a delay in
G2, which usually occurs in cells that have experienced DNA damage during

Fig. 1 Summary of potential sites of c-myc-induced DNA damage. Activation of cy-
clin/cdk complexes by c-myc can lead to premature entry into S-phase or exit from
G2/M. Both these events may induce DNA damage as described in the text and in
the following figures. Additionally, increased metabolic activity induced by c-myc
can generate reactive oxygen species, which can contribute to DNA damage. High
level c-myc expression also activates the transcription of DNA replication and repair
components, which may impact the fidelity of these processes
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S-phase and have arrested for repair [98]. Together, these data support
the conclusion that elevated levels of c-myc can induce the types of DNA
damage that precede gene amplification and other structural chromosome
alterations. The available literature suggests that c-myc may destabilize the
genome by multiple mechanisms. This section focuses on five we consider
most likely: (1) cell growth and metabolism, (2) unscheduled entry into
S-phase, (3 and 4) abrogation of stress-induced cell-cycle checkpoints at
G1/S and G2/M, and (5) modulation of DNA damage response and repair
pathways (Fig. 1).

2.1
Increased Metabolism and Induction of ROS

The mechanisms by which c-myc couples mitogenic stimulation to growth
and proliferation are gradually being elucidated. Physiological activation of
c-myc can be achieved in several ways. In quiescent B cells, c-myc expres-
sion can be activated by nuclear factor (NF)-κB and protein kinase C (PKC)
signaling [99], whereas c-myc transcription is controlled by src and signal
transducer and activator of transcription (STAT) signaling in platelet-derived
growth factor (PDGF)-stimulated fibroblasts [100, 101]. Activation of c-myc
induces growth of B cells in the absence of proliferation, and c-myc overex-
pression can increase cell size throughout the cell cycle [102, 103]. Concordant
with these results, c-myc gene targets include rate-limiting enzymes in the
glycolytic and respiratory pathways and in biosynthetic pathways [104–106].

The metabolic burst associated with emergence from quiescence and en-
try into S-phase is a potential source of reactive oxygen species (ROS). ROS
are essential mediators of proliferative signals, but at high levels can cause
oxidative base modifications and single- or double-stranded DNA breaks. If
such lesions are not repaired, they may become fixed in the genome during
DNA replication. ROS are estimated to induce up to 10,000 lesions per cell
per day [107]. However, the mutagenic potential of these lesions is limited by
a combination of antioxidants and DNA repair enzymes. It follows that since
oncogenes such as ras and c-myc are key players in mitogenic pathways, aber-
rant signaling from either might create an oxidative burden. In support of this,
activation of oncogenic ras can induce ROS in various cell lines in vitro [108,
109]. Adding to these data, other groups have found that activation of c-myc
can increase intracellular ROS [110, 97]. While activation of c-myc is associ-
ated with induction of DNA damage in serum-deprived and cycling normal
human fibroblasts, preincubation with antioxidant only appears to reduce
damage in the former case [97, 111]. These data indicate that although ROS
can contribute to c-myc-induced DNA damage under certain circumstances,
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other mechanisms are also likely to be involved. Data from other studies also
highlight the complex role of ROS as mediators of c-myc-induced effects. For
example, ROS induced by c-myc in NIH3T3 cells do not appear to be cyto-
toxic unless the cells are cultured in low serum [110]. Additionally, ROS are
mediators of c-myc-induced apoptosis in some human cell lines but are as-
sociated with induction of an arrested state resembling senescence in normal
human fibroblasts [97, 112]. A similar senescent-like state has been described
in normal human fibroblasts exposed to ionizing radiation [113], oxidative
stress [114], and following telomere shortening [115]. Taken together, the data
support the idea that in some normal cell types, inappropriate c-myc activa-
tion can induce sufficient DNA damage to elicit a stress response resulting in
some cells undergoing permanent cell-cycle exit.

Elevated ROS are found in some human tumors and tumor-derived cell
lines [116, 117]. In addition to their role in mitogenic signaling mentioned
above, there is evidence that ROS can also contribute to mutations associ-
ated with tumor initiation or progression. For example, many of the point
mutations found in tumor suppressor genes in human cancer can be induced
by oxidative stress [118–121]. Furthermore, elevated frequency of such le-
sions can be found in the p53 gene in normal hepatocytes of individuals with
Wilson’s disease, a disorder associated with elevated ROS and increased risk
of hepatocellular carcinoma [122]. There is also an elevated frequency of ox-
idative stress-related p53 mutations in ulcerative colitis, another disease that
is linked to an increased risk of cancer [123].

Induction of MIN occurs predominantly through mutation of mismatch
repair genes, but excessive ROS can also lead to MIN in vitro [124, 125]. MIN
can generate frameshift mutations in tumor suppressor genes [126], such as
those that inactivate the type II transforming growth factor-β receptor (TGF-
βRII) [127]. This may allow colon epithelial cells to escape growth restriction
mediated by ligation of TGF-β to TGF-βRII. Furthermore, oxidative stress
can increase the frequency of frameshift mutations in lung and colorectal
carcinoma cell lines [128, 129]. Together these data suggest that ROS may
contribute to destabilization of the genome in certain malignancies.

Although many human cancers are associated with environmental agents
such as those inhaled by smoking, the age-specific incidence of sporadic
cancers of the ovary, pancreas, and colon does not vary significantly between
populations [130]. This suggests that endogenous cellular processes may be
involved in the initiation of some tumors. The ability of c-myc and other
oncogenes to activate metabolic pathways leading to oxidative stress suggests
they could be considered candidate pro-mutagens. However, whether ROS
induced by c-myc in vivo is sufficient to induce somatic mutation remains
untested. This is likely to be determined by the contributions of multiple
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signaling pathways in the cell, which in turn will be influenced by cell type
and the surrounding environment. As one example, in a mouse model of
HCC, c-myc overexpression in hepatocytes results in liver tumors, with
a latency of more than 1 year, suggesting that multiple changes are required
for c-myc-induced HCC [131]. By contrast, when TGF-α is co-expressed with
c-myc, the latency for tumor onset is decreased dramatically. Concomitantly,
ROS levels and chromosomal and mitochondrial genome instability in-
creased [133, 132]. Supplementing the diet of these mice with the antioxidant
vitamin E reduced ROS levels and also reduced proliferation. Coincident
with the block to proliferation, the amount of genomic instability was also
significantly decreased. Additional data showed that mitochondrial DNA
deletions were also reduced by vitamin E in this study, providing compelling
evidence that ROS produced as a result of a combination of deregulated c-myc
and TGF-α expression can induce DNA damage in vivo. These data suggest
that inhibition of proliferation and DNA damage by antioxidants can prevent
c-myc-induced instability and tumor progression.

2.2
Unscheduled Entry into S-Phase

In mammalian cells, c-myc activation can increase cell number as well as
cell size, which may depend on the cell type [102, 134]. Studies in rodent
cells demonstrate that the G1 interval is longer in c-myc-null cells when com-
pared to wildtype [135]. These data suggest that c-myc facilitates progression
through G1 into S-phase. In part, these observations may be explained by
the ability of c-myc to downregulate inhibitors of cyclin/cdk complexes or to
stimulate transcription of genes encoding cyclins. The activation of cyclin/cdk
complexes removes the block to the transition from G1 to S-phase, which is
mediated, at least in part, by the Rb protein [136]. Briefly, hypophosphorylated
Rb prevents transcription of genes required for S-phase in two ways. First,
Rb can sequester the transcription factor E2F1, which has been implicated
in the control of S-phase entry [137]. Second, Rb can form a complex with
E2F1 (and other E2F family members) that actively represses S-phase gene
transcription [138]. This section will focus only on bypass of the cell-cycle
checkpoints associated with the transition from G0/G1 to S-phase in the ab-
sence of exogenous stresses. The bypass of DNA damage-induced checkpoints
will be addressed in Sects. 2.3 and 2.4).

Numerous mechanisms may promote the transition into S-phase [139–
143]. For simplicity, the following illustrates a linear pathway in which c-myc
activates cyclin E/cdk2 leading to S-phase entry independently of Rb status.
Activation of cyclin E/cdk2 is important for entry into S-phase, although the
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critical downstream targets are unknown [144–146]. c-myc can activate the
cyclin E/cdk2 complex, primarily by altering the levels or distribution of the
cyclin E/cdk2 inhibitor, p27. p27 loss is a poor prognostic indicator in tumors
of the breast and in gastric and colon carcinoma; a feature of all these cancers
is overexpression of c-myc [147, 148]. Furthermore, deletion of p27 reduces
the latency to tumor onset in c-myc transgenic mice [149]. Cdk-2 dependent
phosphorylation at threonine 187 is required for degradation of p27 [150]. The
phosphorylation allows binding of the Skp1/Cul1/F-box (SCF) ligase complex,
which ubiquitinates p27 and targets it for proteasome-mediated degrada-
tion [151–153]. Cul1, a component of the SCF ligase complex, is also required
for efficient ubiquitination and degradation of p27 [154, 153]. In some systems,
c-myc can induce Cul1, leading to p27 degradation and S-phase entry [155].
Together these data provide one explanation for the ability of c-myc to over-
come a p27-induced cell-cycle block. Additionally, c-myc can directly target
cyclin D2, leading to the sequestration of p27 into heat-labile complexes and
permitting cyclin E/cdk2 activation [156]. The activation of cyclin E/cdk2 by
c-myc is also sufficient to bypass the G1/S block imposed by hypophosphory-
lated Rb and p16 [157]. These data indicate one mechanism by which c-myc
can bypass Rb-mediated checkpoints without Rb hyperphosphorylation.

Inappropriate cyclin E expression can induce genomic perturbations. For
example, the bypass of an Rb-imposed cell-cycle block by c-myc and cyclin E
is associated with endoreduplication [141], and cyclin E/cdk2 activity can
induce chromosomal instability [158]. Although the mechanism for this is
unknown, it is possible that excessive cdk activity might perturb replication
origin licensing, which has been linked to instability [159–161]. Interestingly,
inappropriate cyclin E/cdk activity appears to accelerate S-phase entry but
actually slows replication [158, 162], raising the possibility that DNA damage
and activation of the S-phase checkpoint may occur under such conditions.
Studies in yeast indicate that precocious cyclin/cdk activity can delay firing of
replication origins, leading to strand breakage and chromosomal abnormal-
ities [163]. Whether this can occur in mammalian cells has yet to be shown.
However, a reasonable speculation is that inappropriate entry to S-phase in-
duced by c-myc in the absence of correct origin licensing might lead to DNA
damage (Fig. 2).

2.3
Abrogation of G1/S Arrest Induced by DNA Damage

DNA damage activates checkpoints throughout the cell cycle that prevent
the replication and transmission of mutated DNA [164]. Activation of a p53-
dependent checkpoint at or prior to the restriction point can prevent entry
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Fig. 2 c-myc can induce restriction point bypass by mulitple mechanisms. c-myc
can activate cul1 transcription in some cell types, leading to degradation of the cy-
clin/cdk2 inhibitor, p27. Additionally, c-myc can transactivate cyclin E and cdc25A,
a phosphatase which activates cdk2. Together, these activities activate cyclin E/cdk2 ki-
nase, which in turn should inactivate Rb, release E2Fs and enable S-phase progression.
c-myc can also activate a parallel pathway for S-phase progression, which requires cy-
clin E/cdk2 activation, but does not require inactivation of Rb. The downstream targets
of cyclin E/cdk2 in this pathway are unknown

of cells with as few as one unrepaired double-strand break into S-phase [165,
166]. DNA lesions are recognized by specific protein complexes, which trans-
duce the DNA damage signal to downstream effectors to elicit arrest. Below
we briefly describe the activation of p53 in response to DNA strand breaks
and present experimental data demonstrating that c-myc can attenuate this
pathway in some cell strains.
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Mre11/Rad50/Nbs1 (MRN) complexes are recruited rapidly to sites of
breakage [167]. This termolecular complex is involved in the processing of
DNA lesions that arise during replication and following DNA damage [168,
169]. Activation of the ATM kinase also occurs rapidly after strand breakage
as a result of an intramolecular phosphorylation event [170]. However, the
mechanism by which the break is detected and subsequently activates ATM
remains to be determined. Although MRN is phosphorylated by ATM, it can
be recruited to sites of damage in the absence of ATM activity, indicating that
these two events are not linked [171]. ATM induces direct phosphorylation of
p53 at Ser15, and indirectly induces phosphorylation of p53 at Ser20 by ac-
tivating the damage checkpoint kinase chk2 [172, 173]. These modifications
can activate p53 either by decreasing p53 binding to its negative regula-
tor, mdm2, or by increasing association with the transcriptional co-activator
p300/CBP [175, 174]. Activated p53 then regulates the transcription of numer-
ous target genes leading to cell-cycle arrest, apoptosis, or increased repair,
depending on the cell type and type of damage induced [166]. The inhibition
of Rb phosphorylation by p21 is partially responsible for p53-dependent G1
arrest [176].

Constitutive overexpression of c-myc in epithelial cells can compromise
ionizing radiation-induced arrest, forcing cells into S-phase prema-
turely [177]. The escape from radiation-induced G1 arrest is a direct result of
c-myc action, and not the result of selection for checkpoint-deficient variants,
as it occurs in a significant fraction of normal fibroblasts and epithelial cells
expressing an inducible c-myc-ER construct [97, 177]. The replication of DNA
strand breaks during S-phase is a potential source of continuing genomic
instability, since break repair could generate dicentric chromosomes, which
can then enter into bridge-breakage-fusion cycles (see Sect. 1.2 and [24]).
Therefore, c-myc’s ability to attenuate damage-induced checkpoints is likely
to contribute to genomic instability.

The abrogation of p53-dependent arrest by c-myc can lead to apoptosis in
some cell types [178], which could provide a backup mechanism for limiting
the emergence of genetically unstable variants. Recent data indicate that reg-
ulation of p21 expression by c-myc is a determinant of the apoptotic response.
For example, c-myc can specifically block the DNA damage-induced accumu-
lation of p21 normally observed in colon carcinoma cells [179]. Concomitant
with the decrease in p21 levels, the response of the cells to DNA damage was
switched from arrest to apoptosis. These data suggest that in the context of
a DNA damage signal, p21 induction should be able to prevent apoptosis.
A corollary is that the ability of c-myc to override a damage-induced arrest
should require p21 downregulation, and S-phase entry should induce apop-
tosis. However, cells overexpressing c-myc can escape damage-induced arrest
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and enter S-phase with elevated p21 levels [97, 180]. Other studies show that
the anti-apoptotic function of p21 does not necessarily require its ability to in-
hibit the cell cycle [181, 182]. This raises the possibility that cells with damaged
DNA that enter the cell cycle due to deregulated c-myc expression may evade
apoptosis if p21 levels are sustained. In turn, this may increase the possibility
that DNA lesions become fixed in the genome during replication or repair.

Felsher and Bishop showed that aneuploidy could be induced by c-myc in
exponentially growing Rat1a fibroblasts and normal human fibroblasts, but
that damage associated with strand breakage (i.e., double minutes, polycentric
chromosomes) was only observed in the Rat1a cells [72]. This is presumably
because normal cells respond to strand breaks induced by c-myc by undergo-
ing a p53-dependent arrest resembling senescence [183]. The Rat1a cells are
immortal and have no p21 function due to methylation of the promoter [184].
A lack of p53-mediated arrest in rodent cells may create a permissive envi-
ronment for a wide range of c-myc-induced chromosomal aberrations. Con-
versely, in human cells, activation of p53 may restrict the emergence of certain
types of chromosomal defects, as noted. However, c-myc activity is still able to
induce aneuploidy in normal human cells, indicating that it can compromise
the fidelity of events associated with mitosis (see Sect. 2.4).

�
Fig. 3a, b Activation of c-myc can override damage-induced checkpoints. a The sig-
naling pathway downstream of DNA damage is simplified for clarity. Following strand
breakage, the ATM kinase is activated, although the mechanism by which break de-
tection occurs is unknown. p53 is stabilized and activated by ATM-induced phospho-
rylation. Activated p53 induces the transcription of numerous target genes, among
which are several that induce apoptosis, stimulate DNA repair, or promote cell-cycle
arrest. For example, induction of the cyclin/cdk inhibitor, p21 inhibits cyclin-cdks such
as cyclin E/cdk2, which prevents Rb hyperphosphorylation and inactivation, thereby
blocking S-phase entry. Excess myc activity can attenuate the DNA damage response
and induce cell-cycle progression downstream of p53 activation by inhibiting p21
function in some cell types, although in other situations c-myc-induced bypass occurs
without apparent alterations of p21 levels (see b). For discussion of other components
up- and downstream of p53 activation, see Wahl and Carr [166]. b Override of the p53-
dependent DNA damage response by c-myc. DNA damage can lead to simultaneous,
p53-dependent transcription of cell-cycle arrest and pro-apoptotic genes. In some cell
types, the induction of p21 can inhibit p53-dependent apoptosis. c-myc can selectively
inhibit p21 induction when bound to Miz protein at the p21 promoter, resulting in
apoptosis (1 and [178]). (2) In other cell types, c-myc-mediated inhibition of p21 ap-
pears to lead to cell-cycle entry, which is dependent on cyclin E/cdk2 activity, but does
not involve Miz, and may rather be related to sequestration of p21 into other cyclin-cdk
complexes. Under these conditions, replication of damaged DNA may lead to chromo-
somal abnormalities, which could trigger apoptosis or give rise to genetic variants
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Activation of cyclin/cdk complexes by c-myc may also be involved in the
abrogation of damage-induced checkpoints. The indirect activation of cyclin E
by Myc could potentially participate in this process. Cyclin E and c-myc appear
to activate some common elements of the DNA damage response. For example,
activation of c-myc or overexpression of cyclin E in the absence of exogenous
stress leads to an increase in p53 Ser15 phosphorylation in primary cells [97,
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185]. This demonstrates that inappropriate proliferative signals induce DNA
damage and elicit a classical p53-dependent damage response. However, the
mechanisms by which c-myc and cyclin E override DNA damage-induced
checkpoints are likely to be distinct. To illustrate, expression of cyclin E
induces genomic instability in normal human fibroblasts and immortalized
epithelial cells [158, 185]. However, induction of chromosomal instability by
cyclin E requires abrogation of p53 or p21 function [185]. In contrast, c-myc
can induce chromosomal instability in primary human cells with an intact p53
pathway [72]. Furthermore, c-myc can abrogate ionizing radiation-induced
arrest, but cyclin E overexpression is unable to do so [97, 177, 185]. Taken
together, these data suggest that activation of cyclin E may contribute to
induction of genomic instability by c-myc, but that other activities of c-myc
are likely required to bypass damage-induced checkpoints (Fig. 3).

2.4
Abrogation of Arrest at G2/M

The tight coupling of mitosis and DNA replication ensures the replication
and faithful segregation to each daughter of only one complete genome per
cell cycle [186]. Cell-cycle checkpoints in G2 and M function to maintain the
structural integrity of the duplicated chromosomes and ensure their equal
partitioning at cell division. Defective processes during mitosis can lead to
an abnormal karyotype. For example, aneuploidy occurs following defects in
chromosomal segregation. Additionally, abrogation of arrest induced at G2/M
can also lead to endoreduplication (re-replication of the genome without cell
division) [187–189].

Overexpression of c-myc has been correlated with endoreduplication and
aneuploidy in several models. Prolonged arrest at mitosis following exposure
to agents that perturb the mitotic spindle results in “mitotic slippage,” leaving
cells arrested with 4N DNA content in a G1-like biochemical state [190–193].
Overexpression of c-myc compromises this arrest, leading to endoredupli-
cation [180]. In addition to drug-induced perturbation of microtubules, se-
questration of E2F transcription factors can also lead to mitotic slippage, and
c-myc is able to induce endoreduplication under these conditions [141, 177].
In primary cells, endoreduplication is countered by apoptosis [180]. However,
in cells that are resistant to apoptosis, such genomic instability can be toler-
ated [194]. In summary, for cells that have reduced apoptotic responses, c-myc
activation could induce cell-cycle progression and lead to endoreduplication,
which could perpetuate instability and accelerate tumor progression.

The ability of c-myc activation alone to induce accumulation of cells with
4N DNA content [98] is consistent with its ability to induce sufficient DNA
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damage to provoke a G2/M checkpoint arrest response. However, G2/M arrest
in c-myc-expressing cells also seems to lead to increased ploidy. One potential
explanation is that under these conditions elevated c-myc expression in cells
arrested at G2/M may enable DNA synthesis to reinitiate in the absence of cell
division to induce polyploidy. Although the mechanism for this is unclear, the
data summarized above raise the possibility that it could involve premature ac-
tivation of cyclin/cdk complexes and other factors involved in replication ori-
gin licensing and initiation of S-phase (Fig. 4; see also Sects. 2 and 2.3 above).

2.5
Modulation of DNA Damage Response and Repair Pathways

DNA damage response and repair pathways are present to ensure the faith-
ful replication and segregation of genetic material. Conversely, attenuation
of damage response or repair pathways contributes to genomic instability.
A link between c-myc activation and DNA metabolism is particularly at-
tractive when the effects of c-myc on replication and genomic instability are
considered. This section summarizes recent analyses indicating that c-myc
regulates the expression of genes involved in DNA replication and the DNA
damage response and repair pathways.

Microarray analyses indicate that c-myc can upregulate genes involved
in DNA replication including Topoisomerase I (TOP1), mcm4, mcm6, mcm7
and cdt1 [93, 94, 103, 155]. TOP1 is required during DNA replication to relax
supercoils that are generated by passing replication forks [195]. Therefore,
the induction of this enzyme by c-myc might facilitate S-phase progression.
However, overexpression of TOP1 can induce illegitimate recombination, and
trigger instability [196]. Mcm6, mcm7, and cdt1 are required for firing of
replication origins and can also induce genomic instability when expressed
at high levels ([197] and see Sect. 1).

Although these data show a correlation between myc activation and gene
expression, at present their biological significance is unclear. However, two
recent reports suggest that components of the DNA repair machinery may
be involved in the response to activation of c-myc. The first report focused
on the Nbs1 protein, a component of the MRN complex involved in repair of
replication and damage-associated breaks ([169] and Sect. 2.3 above). Chiang
et al. [198] showed that small interfering (si)RNA-mediated knockdown of c-
myc decreases Nbs1 levels, and they postulate that induction of Nbs1 by c-myc
is required during DNA replication. However, the length of S-phase is unaf-
fected in c-myc-null rat fibroblasts compared to the parental line [135, 199].
Additionally, Nbs1 deficiency in transformed fibroblasts does not affect the
rate of DNA synthesis [200]. Further work is therefore required to determine



186 M. Wade · G. M. Wahl

Fig. 4 c-myc Activation of cyclin B/cdc2 may contribute to chromosomal instabil-
ity. Multiple regulatory pathways converge at cyclin B/cdc2 to control its mitosis-
promoting activity. Inhibitory phosphorylations are removed from the cdc2 subunit
by cdc25C phosphatase, and Plk-1 kinase phosphorylates cyclin B, leading to activa-
tion of the holoenzyme. Following induction of DNA damage by exogenous stresses or
oncogene activation, several pathways lead to arrest at G2/M, presumably by inhibiting
cyclin B/cdc2. Arrest pathways involve sequestration of cdc25C and cdc2 in the cytosol
by 14-3-3 and 14-3-3σ proteins, respectively, and upregulation of the cyclin B/cdc2 in-
hibitor, Gadd45. c-myc can upregulate cyclin B and cdc25C, leading to activation of
cyclin B/cdc2, which should lead to mitotic entry. Additionally, c-myc can attenuate
p53 function, which has been implicated by several studies in the G2/M checkpoint.
Since c-myc has been reported to induce aneuploidy and can activate cyclin B/cdc2, it
is possible that c-myc overexpression perturbs events in G2-M to reduce the fidelity of
chromosome segregation. See Sect. 2 for further details
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whether c-myc and Nbs1 interact in pathways that affect DNA metabolism.
A second study indicated that loss of the WRN protein (a DNA helicase in-
volved in repair) leads to senescence in cells overexpressing c-myc [201].
The authors speculate that WRN activity may be required in certain cellular
contexts to facilitate c-myc-driven proliferation during tumorigenesis.

It is unclear how c-myc-induced upregulation of DNA repair genes such
as Nbs1 or WRN might affect genomic integrity. During normal prolifera-
tion, induction of repair enzymes by c-myc might facilitate the resolution of
breaks arising during replication and thus contribute to replication fork pro-
gression. However, it has also been suggested that inappropriate induction of
repair enzymes during S-phase could promote unscheduled repair of replica-
tion intermediates and increase the probability of generating chromosomal
aberrations [202]. Conversely, inhibition of scheduled DNA repair during
the cell cycle can also lead to chromosomal defects. Interestingly, a recent
report indicates that c-myc activation may suppress the repair of double-
strand breaks in normal human cells [111]. The authors suggest that this may
explain the increased frequency of chromosomal rearrangements following
activation of c-myc. Whether c-myc inhibits repair directly via transactiva-
tion or repression of DNA damage response or repair genes or via a more
indirect mechanism remains to be determined. Finally, conditions that accel-
erate or retard replication fork progression can induce chromosome breakage,
suggesting that perturbation of S-phase progression could also increase the
probability of chromosomal rearrangement. It is conceivable that c-myc over-
expression could affect S-phase progression given the number of target genes
it regulates with functions in DNA replication [93, 94].

3
Reversible Activation of Oncogenes and Genomic Instability

Loeb postulated that induction of a mutator phenotype initiates a genetically
irreversible tumor progression [203]. This is because once genes critical for
maintenance of genomic stability are mutated, re-establishment of a normal
genome becomes impossible. Therefore, if c-myc is acting as an endogenous
activator of the mutator phenotype, turning off c-myc expression should not
lead to the re-emergence of cells with a normal karyotype. Furthermore, if the
gene expression changes resulting from the rearrangements induced by c-myc
overexpression were sufficient to sustain growth, turning c-myc off should not
lead to tumor regression. Felsher and Bishop [72] showed that c-myc-induced
gene amplification and tumorigenicity persisted in Rat1a cells following c-myc
inactivation. These data suggest that, at least in the Rat1a cells, c-myc-driven
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instability correlated with a durable tumorigenic phenotype that persists in
the absence of the initiating event (i.e., c-myc activation).

By contrast with these data, other studies show a requirement for persistent
c-myc activity to maintain tumor cells in vivo. T cell lymphomas initiated
by c-myc activation undergo apoptosis and regression when c-myc is turned
off [204]. Similarly, inactivation of c-myc in the skin and pancreas leads
to regression of papillomatosis and β-cell hyperplasia, respectively, which
are accompanied by apoptosis [205, 206]. Osteosarcomas and mammary
carcinomas initiated by c-myc also revert after the myc transgene is turned
off [207]. Mutations in the Wnt pathway leading to excessive Wnt signaling
are associated with a number of human cancers [208, 209]. c-myc is positively
regulated by the Wnt signaling pathway and may be required for Wnt-induced
tumorigenesis [210, 211]. In support of this, activation of Wnt in the breast
leads to carcinoma concomitant with elevated c-myc [212]. Similar to the
reversible activation of c-myc, inactivation of Wnt is sufficient to induce
tumor regression [213].

The regression mechanisms have not been elucidated. Loss of c-myc func-
tions such as proliferation, angiogenesis, and inhibition of differentiation are
likely to be important. Another possibility is that genomic instability could be
a trigger for apoptosis once c-myc is inactivated. Perhaps c-myc can attenuate
signaling from the damaged genome to the apoptotic machinery. Alterna-
tively, c-myc may activate some enzymes involved in DNA metabolism (see
Sect. 2), which would prevent apoptosis at the expense of initiating irregular
repair. DNA damage could induce apoptosis and regression, but the down-
stream effectors of apoptosis remain unknown. To illustrate, inactivation of
Wnt in the breast leads to regression regardless of p53 status, implying the
involvement of p53-independent apoptotic mechanisms [213].

The studies outlined above suggest that c-myc expression is required for
sustained tumorigenesis. Furthermore these data seem to indicate that ge-
nomic destabilization may not be sufficient to maintain tumorigenic po-
tential in these models. Therefore, one might conclude that c-myc is not
able to engender the classical mutator phenotype as described by Loeb (see
above), since the tumorigenicity is reversible. However, following a period
of remission, some tumors resumed growth in the absence of oncogene ac-
tivity [204, 207]. Murine mammary carcinomas that relapsed in the absence
of c-myc activity frequently exhibited ras mutations [207]. Complex chromo-
somal rearrangements were also observed in relapsed lymphoid tumors that
had escaped dependence on c-myc [76]. Interestingly, all relapsed tumors
displayed novel karyotypic aberrations compared to primary tumors. It is
possible that in the breast model, pre-existing ras mutations are present in
some of the c-myc-induced tumors and that these cells provide a selective
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advantage for regrowth in the absence of c-myc activity. In contrast, there
was no genetic lesion common to all relapsed lymphoid tumors. This raises
the intriguing possibility that acquisition of specific genetic lesions induced
by c-myc enhance the propensity for relapse in some tumors. Studies of Wnt-
driven tumorigenesis indicate that p53 status is an important determinant of
relapse. For example, loss of one p53 allele leads to a sevenfold increase in
relapse frequency of breast tumors [213]. This suggests that attenuation of
p53 function may be one mechanism by which genomically unstable tumors
initiated by oncogenes could relapse. Does this mean that relapsed tumors
are those that have sustained somatic mutations in p53 and now provide
a selective advantage in the context of c-myc-induced chromosomal changes?
Preliminary data from Karlsson et al. [76] suggests that p53 and arf loci are
intact in relapsed tumors, indicating that genetic inactivation of these tumor
suppressors is not required for escape from oncogene dependence. However,
it is possible that epigenetic inactivation of the p53 pathway may contribute
to tumor progression in this model.

It is important to note that some tumors do not relapse once c-myc is turned
off. For example, full regression of c-myc-driven hyperplasia is observed in the
pancreas and skin [205, 206]. Furthermore, osteosarcomas driven by c-myc
regress when the transgene is inhibited [214]. Therefore, in some cell types,
genomic instability may be insufficient to phenocopy the required functions of
c-myc. The basis of these differences is not understood. However, it is possible
that hyperplasia in some tissues remains dependent on other functions of c-
myc such as its role in stimulating angiogenesis. In addition, c-myc activation
in the skin can inhibit or promote differentiation, depending on the cell type,
further underscoring the complex response to c-myc in vivo [205, 215].

4
Summary

Oncogenic activation of c-myc affects multiple intracellular pathways, culmi-
nating in neoplastic transformation in many cell types. Frequently associated
with deregulated c-myc activity are numerical and structural alterations of
the karyotype. In certain tumors, comparison of normal and pre-neoplastic
tissues reveals chromosomal aberrations specifically associated with c-myc
activation. The persistence of these lesions during tumor progression in-
dicates that they are selected for during tumorigenesis. Due to its ability
to impact numerous biological functions, c-myc is carefully controlled in the
non-pathological state. By extension, deregulated c-myc activity is potentially
catastrophic for the cell. Activation of apoptosis in response to c-myc plays
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a critical role in limiting its deleterious effects. However, should this pathway
become disabled or desensitized, c-myc has the potential to wreak havoc on
the genome. Mechanistic links between c-myc activation and genome desta-
bilization are beginning to emerge from in vitro and in vivo studies. For
example, disruption of cell-cycle checkpoints by c-myc can lead to aberrant
DNA replication, a source of genomic instability. Other data indicate that
metabolic effects of c-myc, which may be independent of its cell-cycle pro-
moting ability, might also lead to DNA damage. Specifically, oxygen radicals
produced following c-myc activation could precipitate genomic changes in-
cluding break-induced rearrangements and oxidative base modifications. The
ability of c-myc to compromise p53-dependent cell-cycle checkpoints indi-
cates that, under certain conditions, genomic perturbations may occur even
in the presence of tumor suppressor genes.

In vivo models have provided great insight into the complexities involved in
c-myc-induced tumorigenesis. The reversible activation models have demon-
strated that many tumors remain dependent on c-myc expression and undergo
apoptosis once c-myc is turned off. These data indicate that there is a func-
tional inactivation of the apoptotic pathway in the presence of c-myc activity,
rather than a selection for cells that have lost the ability to induce cell death.
The mechanism of apoptosis induction following c-myc inactivation is in-
completely understood. Many explanations have been put forward, based on
some of the known biological effects of c-myc. These include regression of
vasculature, which would reduce tumor nutrient supply and re-establishment
of differentiation, which may sensitize cells to programmed cell death. How-
ever, the link between genome destabilization and apoptosis might offer an
alternative explanation. Perhaps DNA damage signaling pathways, which nor-
mally initiate apoptosis in response to karyotypic abnormalities, are atten-
uated while c-myc is expressed. Re-activation of these pathways once c-myc
is switched off might lead to the rapid elimination of cells with abnormal
genomes. Further studies that address the interaction of c-myc with compo-
nents of the DNA damage response pathway are likely to provide valuable data
in this emerging area of c-myc research. Determining the effect of c-myc ex-
pression in the context of DNA damage response/repair pathway deficiencies
in vivo may provide further insight into the role of c-myc-induced instability
in tumorigenesis.
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